
PID: Flight Control
Personal Project

abstract
Implementing and tuning a PID-controller in an App built using MIT
Appinventor. The controller enables a plane to land on a runway in differ-
ent scenarios, including wind and limited manoeuvring speed. The PID-
controller is compared to the BangBang algorithm, which shows that the
BangBang algorithm is almost as well performing, but less realistic than
the PID-controller. Additionally, there was a not fully understood prob-
lem with the PID-controller which resulted in shaky movements when
heavy weights for the derivative term are used.

Marco B. Gabriel
April 2022

:

Process Control
Department of Informatics

University of Fribourg (Switzerland)

Table of Contents

1. Introduction 2
1.1. Introduction . 2
1.2. State Of The Art . 2

2. Flight Control 4
2.1. Specific Setting . 4
2.2. Solution . 5

2.2.1. Implementation . 6
2.2.2. PID Tuning . 9

2.3. Result . 11

3. Discussion 13
3.1. Discussion . 13
3.2. Improvements . 13

4. Conclusion 14

A. License of the Documentation 15

References 16

Referenced Web Resources 16

i

List of Figures

2.1. Screenshot of the App, showing the simulation screen 5
2.2. The code blocks for the PID-controller 7
2.3. Screenshot of the settings including my additions 8
2.4. Overview of technologies used and the flow direction of information . . . 8
2.5. Look-up table for PID-controller tuning with the Ziegler-Nichols method,

where Tc = oscillation period and Kc = minimal value for Kp where oscil-
lation starts. 9

2.6. Plot of the error with P=0.05 I=0 D=0 9
2.7. Plot of the error with P=50 I=0 D=0 . 10
2.8. Plot of the error with P=0.04 I=0.0001 D=-300 10
2.9. Plot of the error and banking angle for P=0.3 I=0.002 D=-3000 11
2.10. Plot of the error and banking angle of the Fighter-Jet mode 12
2.11. Plot of the error and banking angle of the Drink mode 12
2.12. Plot of the error and banking angle of the Normal mode with instant

runway relocation . 12

ii

List of Tables

2.1. The available parameters to tune . 5
2.2. The BangBang logic . 6
2.3. The values for the different modes . 11

1

1
Introduction

1.1. Introduction . 2

1.2. State Of The Art . 2

1.1. Introduction

As part of the Process Control 2022 course[7], I am tasked with creating a PID-controller
which acts as the flight-controller of a simulated aircraft. The simulation is built in an
App using the MIT Appinventor[5]. The task is to implement the code needed for the PID
functionality and find suitable PID values for three different scenarios. These scenarios
are:

• a) The plane is required to stay on course as much as possible (Fighter-Jet)
• b) The plane carries passengers holding a drink, that should not spill (Drink)
• c) The plane carries passengers that fastened their seat-belts and want to land on

the runway (Normal)

Furthermore, I should compare the PID-controller with the BangBang-controller and
explain how I found adequate values for the PID-controller.

1.2. State Of The Art

Controlling processes is an important field in the industry. Not only does the manufac-
turing of goods require clever controlling, some products itself are also in need for efficient
algorithms to control various procedures. For example, in the context of the production
of aluminium, the controlling algorithm must operate the heating such that there is a
constant temperature despite the addition of new aluminium, which cools down the oven.
Examples for products that include some form of controllers are the assistant systems
of modern cars (lane-keeping) or the air conditioning (temperature). Both of these sys-
tems need to compete against uncontrollable interferernces like curves in the road or the
shining hot sun respectively. In such systems, the exact dynamics are unknown.

2

1.2. State Of The Art 3

Already a hundred years ago, Nicolas Minorsky found out, that the applied actions to
control such a system should be calculated by the following formula:

action = weight1 ∗ error(t) + weight2 ∗
∫ t

0

error(t)dt+ weight3 ∗
d

dt
error

which represents the core of every PID-controller.[1] Subsequently, this formula was tuned
until near perfection. Nowadays, there already exist very well tuned PID-controllers for
many applications. It is no surprise that PID-controllers are still relevant today and used
in various industries.[3]

2
Flight Control

2.1. Specific Setting . 4

2.2. Solution . 5

2.2.1. Implementation . 6

2.2.2. PID Tuning . 9

2.3. Result . 11

2.1. Specific Setting

The bare bone of the App is already given. It consist of two screens, the simulation
and the settings. In the simulation, a plane is steered by either BangBang or the PID-
controller and attempts to land on a runway. The plane can only land if it stays within a
specific tolerance of the center of the runway. The position of the runway can be changed
by touching on the screen. Tilting the phone to one side (left or right) introduces wind,
which pushes the plane off it’s course to one side. More tilt equals more wind. The
described situation is shown in Figure 2.1. The velocity, how fast the aircraft can correct
it’s course is limited by the drag parameter. Lower drag means the plane can fly faster,
however it has no effect on the plane’s acceleration.

4

2.2. Solution 5

Fig. 2.1.: Screenshot of the App, showing the simulation screen

In the settings menu, it is possible to change various parameters used in the simulation.
These are listed in Table 2.1. I have to find values for these parameters that do not
cause jumpy corrections when the runway location changes suddenly and do not lead to
a ’locking’ effect when the wind is too strong for a prolonged period of time [7].

Parameter Description
Kp Weight of the proportional error
Ki Weight of the integral of the error
Kd Weight of the error’s derivative
Drag The drag the aircraft experiences, lower means higher maximum

velocity
Acceptable Error The horizontal offset the plane is allowed to have to continue landing

Tab. 2.1.: The available parameters to tune

Now only one, but three sets of these values have to be found to satisfy following three
scenarios[7]:

• a) Fighter-Jet: Always stay on course (with a very agile aircraft)
• b) Drink: No sudden moves (because a passenger is holding a drink which should

not spill)
• c) Normal: Normal landing (movements can be a bit rough if needed)

2.2. Solution

The task consists of two parts, the implementation and the tuning of parameters.

2.2. Solution 6

2.2.1. Implementation

BangBang

The BangBang algorithm is implemented rather simply. If the current offset (denoted
as ’error’) is bigger than the hysteresis (the range of values that require no correction,
denoted as ’Kh’) to the left or to the right, the plane steers as much as it can to the
appropriate direction. Inside the acceptable range, the plane steers straight ahead. For
visual examples, refer to Table 2.2.

Offset Correction applied Image of the situation

error > 0+Kh Max correction to the left
error < 0-Kh Max correction to the right Analogous to the previous image

|error| < Kh No correction

Tab. 2.2.: The BangBang logic

PID-controller

To implement the PID-controller, I stuck closely to the pseudo code shown in class[6].
I will explain my implementation based on illustration 2.2. The error is calculated by
subtracting the x-axis coordinates of the plane from the runway. The time difference ’dt’
is set using SystemTime.
Afterwards, the error is integrated by multiplying it with ’dt’ and adding it to the previous
value called ’accumulated error’ or ’acc_err’. To avoid a ’locking’ effect the previous
accumulated error is multiplied by 0.99 to make it slowly ’forget’ the past. Also, this value
has to stay within the boundaries given by ’CorrectorMin’ and ’-Max’. I implemented
the option to link these limits to the used weight, because in my opinion that made more
sense and led to a better behaviour. Otherwise the integral part alone could never make
use of the whole correction range, because it would be impossible to reach the maximum,
and therefore struggled to keep up against the wind.
The derivation is calculated by dividing the ∆x− coordinate by the ∆time, so to speak,
the derivative term represents the velocity. At the end, the three terms are weighted,
summed and the correction is applied.

2.2. Solution 7

Fig. 2.2.: The code blocks for the PID-controller

Improved Settings

I added a selection to choose between the three different PID-modes in the settings screen,
to allow for an efficient way of testing the different scenarios.
Additionally, I added a switch for the previously mentioned weighing of integral limits,
as can be seen in Figure 2.3.
Furthermore, I added a switch to turn on smoothing of the aircraft’s movements. This
is done by limiting the angular difference the plane’s banking can have compared to the
last iteration. Without this smoothing, the aircraft’s movements get shaky for big Kd
values, I suspect that inaccuracies in the timing used for the derivation is the cause of the
problem. This measure simultaneously solves the problem of having jumpy corrections
when the runway location changes suddenly. Of course, one can argue that with this
modification the PID-controller is not a pure PID-controller anymore.

2.2. Solution 8

Fig. 2.3.: Screenshot of the settings including my additions

Logging Via Web

To access the simulation’s raw data easily, I had to find a way to transfer the data from
the App to my computer, where I can analyse and visualise it better. We normally used
MQTT to achieve communication between multiple devices. However, since I need to
upload many data points in real time, without losing any data, I decided against using
MQTT. I reasoned, that MQTT is not well suited for queuing log-like messages because it
is organised using topics, where only the latest event is stored and not the entire history.
Of course, we could scan for new messages faster than we publish them, but I wanted
to avoid such a race-condition. Or I might just not realise the MQTT-solution to my
problem due to limited experience in that technology.
Therefore I settled on using a simple PHP script. An overview over the whole process
is given in Figure 2.4. The App sends the timestamp and the current error encoded as
HTTP-GET parameters to a PHP script run on my server. That script stores the received
data in a CSV-file and makes it accessible to GET requests from Clients. On the client,
I can use Excel to analyse and visualise the data. Additionally, I wrapped the complete
communication in a VPN, so I do not need to worry about security issues.

Fig. 2.4.: Overview of technologies used and the flow direction of information

2.2. Solution 9

2.2.2. PID Tuning

First, I tried to use the Ziegler-Nichols method for tuning PID-controllers. I used the
formula mentioned in Figure 2.5[2].

Fig. 2.5.: Look-up table for PID-controller tuning with the Ziegler-Nichols method, where
Tc = oscillation period and Kc = minimal value for Kp where oscillation starts.

However, this approach did not seem to work well. When searching for Kc, Very small
values for Kd already induced oscillation. I then added the appropriate Ki and Kd values
to the controller. Nevertheless, the oscillations where still present and the controller was
too weak (e.g. too small parameters) to counteract even little wind disturbances, as seen
in Figure 2.6.
Out of curiosity, I tried higher values for Kp and was surprised, that they stayed better at
the target value than the values proposed by the Ziegler-Nichols method, although they
still oscillated, shown in Figure 2.7. I suppose, the Ziegler-Nichols method does not work
in this context because there is inertia and drag associated with the planes movement.
Consequently, I sought to tune the PID-controller manually. I inspected the code to
determine which parameter is responsible for what behaviour. The proportional is straight
forward just a correction to where the runway is currently. The integral sums up all errors
over time, therefore corrects long lasting offsets caused by disturbances. The derivative
resembles the speed, so if we weigh it negatively, we can avoid fast movements and
therefore hopefully mitigate oscillations and overshoot.

Fig. 2.6.: Plot of the error with P=0.05 I=0 D=0

2.2. Solution 10

Fig. 2.7.: Plot of the error with P=50 I=0 D=0

I started only adjusting the proportional and derivative and keeping the integral at 0
while not introducing any wind, to rule out any oscillations before trying to correct
against disturbances using the integral.
After some time of trial and error, I found a triple of values which allowed the plane
to land within a reasonable amount of time, but only if there was close to no wind.
Subsequently, I found out that to compensate the wind, the integral and proportional
weights must be big enough, but this leads to enormous overshoot and oscillation if they
are not accompanied by an even heavier weight for the derivative.
Finally, for each scenario, I tried to find compromises in the three values to enable to
plane to resist some wind, without too much shaking due to a too high derivative weight.
But without shaking, there are just no good solutions. Therefore I disregard the shaking
as a constraint for the ’Normal’ and ’Drink’ mode and just focus on the plane’s behavior
near the runway without the shaking. I used 1 as the acceptable Error. I soon managed
to get an acceptable result shown in Figure 2.9, and a video[8] is also available. The
first 25 seconds are clearly dominated by this ominous shaking, but once the aircraft is
close to the runway, it’s banking angle is stable and moves smoothly. It even manages
to continue the landing approach despite mediocre wind (notice that the wind changed
direction between 33 and 40 seconds).

Fig. 2.8.: Plot of the error with P=0.04 I=0.0001 D=-300

2.3. Result 11

Fig. 2.9.: Plot of the error and banking angle for P=0.3 I=0.002 D=-3000

2.3. Result

My final results are shown in Table 2.3. Except for the uncontrollable shaking I am very
satisfied with my values for the Fighter-Jet mode. In Figure 2.10 one can clearly see
that the jet reacts quickly (red line) to the wind and stays perfectly (blue line) above the
runway. Only the back and forth between seconds 10 and 15 is unwanted.
On the other hand, when looking at the Drink-mode in Figure 2.11, we see that this
mode reacts slowly and in sinus wave-like ways to changing winds. This should prevent
the passenger from spilling her drink. Although, this mode does need to abort the landing
if the wind gets any stronger than a mild breeze, as one can see at the end of the graph.
As expected, the shaky noise at the start is also calmer than with the fighter-jet, because
we use a smaller Kd value.
Even the edge-case of instant runway relocation is covered, as can be seen in Figure 2.12.
Jumpy behaviour would look like vertical red lines in the graph, but these are clearly
diagonal and therefore resemble smooth movements of the plane.

Mode Kp Ki Kd
Fighter-Jet 2 0.006 -9000
Normal 0.3 0.002 -3000
Drink 0.03 0.001 -1500

Tab. 2.3.: The values for the different modes

2.3. Result 12

Fig. 2.10.: Plot of the error and banking angle of the Fighter-Jet mode

Fig. 2.11.: Plot of the error and banking angle of the Drink mode

Fig. 2.12.: Plot of the error and banking angle of the Normal mode with instant runway
relocation

3
Discussion

3.1. Discussion . 13

3.2. Improvements . 13

3.1. Discussion

Before ranking the BangBang algorithm against the PID-controller we have to define the
target use case. The BangBang algorithm is simple and effective in landing the plane
in mild wind, but the aircraft’s movements are very jumpy and therefore impossible in
reality.
Contrarily, the PID-controller leads to more realistic movements but requires tedious
tuning and is in this case prone to some weird shaky behaviour when the runway is
further away. All in all though, the PID-controller does handle the aircraft fascinatingly
well once above the runway. Even mediocre gusts of wind can not push the plane to the
side.

3.2. Improvements

The most important improvement would be to somehow smooth the plane’s movement
even more when using high values for Kd. Because of this phenomenon, it is factually
impossible to find suitable values for the scenario with a passenger holding a drink,
except for when we purposely exclude this part from our scope. So there are two possible
solutions: Fix the reason for this shaky behaviour, or include the smoothing-parameter
when changing modes, so we can limit the plane’s movement with this variable instead
of the PID-weights.
Apart from this, it might be possible to find PID-values which give similar results, that
do not require modifications to the PID-controller, but run on a pure PID-formula.

13

4
Conclusion

Both algorithms, BangBang and the PID-controller are capable of landing a plane despite
some wind. The BangBang algorithm leads to movements that are physically not possible
in the real world, whereas the PID-controller creates movements that look convincingly
real. But I encountered a problem with the PID-controller, that led to the aircraft
shaking back and forth when it was far away from the runway. The probable reason for
this unappealing behaviour is some inaccuracies with the timing and big weights for the
derivative term.
The source code to this App can be downloaded: aia
The APK to this App can be downloaded: APK
The raw data and graphs for this paper can be downloaded: Excel File

14

https://weebit.ch/PID_Exercise_Marco_Gabriel.aia
https://weebit.ch/PID_Exercise_Marco_Gabriel.apk
https://weebit.ch/flight%20control.xlsx

A
License of the Documentation

Copyright (c) 2022 Marco B. Gabriel.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.
The GNU Free Documentation Licence can be read from [4].

15

References

[1] S. Bennett. Development of the pid controller. IEEE Control Systems Mag-
azine, 13(6):58–62, 1993. https://ieeexplore.ieee.org/document/248006 (ac-
cessed April 16, 2022). 3

[2] Christos Tsironis and K Giannopoulos. In: Glow Discharges and Tokamaks ISBN:
978-1-61668-352-8 Editor: Sean A. Murphy, pages 1–80. 10 2010. 9

[3] Ramon VilanovaAntonio Visioli. Pid control in the third millennium. Ad-
vances in Industrial Control, page ix, 2012. https://folk.ntnu.no/skoge/
puublications_others/books/vilanova-visioli-PID%20control%20in%20the%
20Third%20Millennium%20-%20Springer%202012.pdf (accessed April 16, 2022). 3

16

https://ieeexplore.ieee.org/document/248006
https://folk.ntnu.no/skoge/puublications_others/books/vilanova-visioli-PID%20control%20in%20the%20Third%20Millennium%20-%20Springer%202012.pdf
https://folk.ntnu.no/skoge/puublications_others/books/vilanova-visioli-PID%20control%20in%20the%20Third%20Millennium%20-%20Springer%202012.pdf
https://folk.ntnu.no/skoge/puublications_others/books/vilanova-visioli-PID%20control%20in%20the%20Third%20Millennium%20-%20Springer%202012.pdf

Referenced Web Resources

[4] Free Documentation Licence (GNU FDL). http://www.gnu.org/licenses/fdl.txt
(accessed July 30, 2005).

[5] MIT Appinventor. http://ai2.appinventor.mit.edu (accessed April 16, 2022). 2
[6] PID Algorithm. https://moodle.unifr.ch/pluginfile.php/1393106/mod_

resource/content/1/SteuerungRegelung.sozi.html#frame2086 (accessed April
23, 2022). 6

[7] Moodle Page of the Process Control Course 2022. https://moodle.unifr.ch/
course/view.php?id=266201 (accessed April 16, 2022). 2, 5

[8] Video of the Fighter-Jet mode. https://www.youtube.com/watch?v=1O-RV72lOec
(accessed April 24, 2022). 10

17

http://www.gnu.org/licenses/fdl.txt
http://ai2.appinventor.mit.edu
https://moodle.unifr.ch/pluginfile.php/1393106/mod_resource/content/1/SteuerungRegelung.sozi.html##frame2086
https://moodle.unifr.ch/pluginfile.php/1393106/mod_resource/content/1/SteuerungRegelung.sozi.html##frame2086
https://moodle.unifr.ch/course/view.php?id=266201
https://moodle.unifr.ch/course/view.php?id=266201
https://www.youtube.com/watch?v=1O-RV72lOec

	Introduction
	Introduction
	State Of The Art

	Flight Control
	Specific Setting
	Solution
	Implementation
	PID Tuning

	Result

	Discussion
	Discussion
	Improvements

	Conclusion
	License of the Documentation
	References
	Referenced Web Resources

