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Abstract

Robots are an important reason for increased productivity in many industrial sectors.
This development is part of Industry 4.0, which aims to combine information systems
such as Artificial Intelligence with robots to increase performance. However, as robot
manufacturers like KUKA often use proprietary communication protocols and interfaces,
compatibility problems arise between information systems and robots. Although there
exist various approaches to control KUKA robots, none of them solve the problem uni-
versally or without caveats. Consequently, a REST API for KUKA robots is a valuable
addition as it provides a human- and machine-friendly, client-independent interface. In
this project, we design and implement such a solution using the Design Science Research
Methodology for Information Systems Research (DSRM). We evaluate our implementa-
tion using the OrangeApps Education Robot System (ERS). The results show that our
product provides similar or greater generalisability than existing approaches, depending
on the respective solution, while solely relying on a KUKA Robot Controller (KRC)
supporting communication over files. Our implementation provides the KUKA Robot
Language’s key functions over a REST API. However, it could be improved by introduc-
ing error handling or increasing the reliability and number of provided functions.
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1
Introduction

Robots are an important reason for an increased productivity in many industrial sectors
[Schierl, 2017]. Currently, installations of robots are at an all time high and expected to
continue growing in the near future [International Federation of Robotics, 2022].
This development is part of the concept of Industry 4.0, which aims to, among other
things, combine information systems such as Artificial Intelligence with collaborating
robots [Benotsmane et al., 2018]. Such collaboration allows to distribute the intelligence
of robots to achieve the desired performance [Day, 2018].

1.1. Problem Statement

But there is an obstacle to overcome before achieving the integration of various informa-
tion systems with robots. Most manufacturers of robots use proprietary communication
protocols and interfaces, making it difficult for robots from various producers to collabo-
rate [Arnarson et al., 2020]. This translates to compatibility problems between informa-
tion systems and robots. Thus, the selection options of control systems for robots is often
severely limited.

1.2. Existing Solutions

To find existing solutions to the identified problem, we utilise the search engines Google
and Google Scholar. In the latter, we search for the term "kuka robot controller krl".
Combining the terms "kuka", "rest" and "api" also yields a considerable solution. Fur-
thermore, we consider a standard Google search for the keywords "kuka" and "api" to not
restrict ourselves on formally published solutions. Finally, we investigate other solutions
mentioned in relevant projects that we found.
Although there are some initiatives to homogenise the use of protocols, languages and
interfaces in robotics, the problem is far from solved. Amongst others, the solutions at
hand are:

• Fast Research Interface [Schreiber et al., 2010]
• JOpenShowVar [Sanfilippo et al., 2015]
• Robot Operating System (ROS) [Open Source Robotics Foundation, n.d.a]

2
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• OPC Unified Architecture (OPC UA) [OPC Foundation, n.d.]
Regrettably, none of them solve the problem universally and completely. For example,
even the popular OPC UA is not supported natively by KUKA controllers. Other solu-
tions, like the Fast Research Interface, are limited to a special kind of robot.

1.3. Research Gap

The programming language used on KUKA robots is the proprietary KUKA Robot Lan-
guage (KRL) [KUKA, 2022], which does not include all features of modern programming
languages, like matrix operations or the usage of external libraries. KRL is tailored for
industrial usage and does not natively support creating new functionalities for research
purposes [Mühe et al., 2010]. Only certain features are offered at an additional cost, as
with the KUKA RSI [KUKA AG, 2023g].
Although there already exist open source alternatives, they often require model-specific
drivers, which are not always readily available. Consequently, a model-agnostic solution
would provide value to the field of robotics, as the same program could be used on different
robots. This opens the possibility to test code on a small scale robot instead of relying
on simulations before executing it on a big and expensive robot.
An important complement to the existing solutions can be made in the form of a REST
API, as [Alam et al., 2020] believe. A REST API provides a human- and machine-friendly
interface and simplifies programming, for example with Swagger [Surwase, 2016]. The
API can be used in combination with any programming language supporting HTTP
Requests.
As there does not yet exist a straightforward system that allows controlling KUKA robots
through a REST API, the goal of this thesis is to develop a REST API for KUKA Robots
specifically, with the OrangeApps Education Robot System (ERS) [OrangeApps, n.d.] as
a concrete use case. The system should be robot-agnostic, supporting various KUKA
robot models. Furthermore, it should support movement commands to be specified in a
coordinate system, not just axis movements.

1.4. Research Questions

To guide the development process, we state the following research questions:
Research Question 1: What is the State of the Art?
It is researched, if a similar or same project was already done. So far, we are only aware
that there are approaches to use REST APIs to control robots from different brands and
approaches to use APIs or indirect REST APIs with KUKA robots. But no REST API
with KUKA robots directly.
Research Question 2: What is the best Approach to implement a REST API
bridging KUKA Robots?
First, we study how the KUKA Robot Language (KRL) works, to understand which
features it offers that we need to bridge. Afterwards, we decide on the best approach to
develop a REST API to provide the KRL functionality. This includes, whether we need



1.5. Methodology 4

additional hardware or only software, and documenting every decision. Finally, we decide
on how to test the APIs functionality.
Research Question 3: How is the REST API implemented and how does it
perform?
This includes the documentation of the final implementation and the detailed description
of its usage. The result of the evaluation, e.g. if the API works, and how extensively and
robust it works, and whether it also works for other KUKA robots than the Education
Robot System from OrangeApps.

1.5. Methodology

Answering the Research Questions is done using the Design Science Research Method-
ology for Information Systems Research (DSRM) from [Peffers et al., 2007]. The DSRM
consists of multiple phases which are outlined in the following paragraphs.
Problem identification and motivation
"Define the specific research problem and justify the value of a solution. [...] Resources
required for this activity include knowledge of the state of the problem and the importance
of its solution" [Peffers et al., 2007].
We conduct research on similar previous work. This includes approaches using a REST
API to bridge proprietary programming languages or APIs to control robots, but also
approaches using non-REST APIs with a focus on KUKA robots. Such an example is
[Alam et al., 2020]. Most of the research is done using the Google Scholar search engine.
Define the objectives for a solution
"Infer the objectives of a solution from the problem definition and knowledge of what is
possible and feasible" [Peffers et al., 2007].
After studying how the proprietary robot controls, e.g. the KUKA robot controller (KRC)
and the KUKA Robot Language (KRL) work, we decide on mainly qualitative require-
ments. These should roughly resemble the capabilities identified while studying the KRC.
Design and development
"Create the artifact. Such artifacts are potentially constructs, models, methods, or in-
stantiations [...]. This activity includes determining the artifact’s desired functionality
and its architecture and then creating the actual artifact" [Peffers et al., 2007].
We analyse different approaches for their quality and feasibility in regards to our ob-
jectives. Then we compare them to select the best alternative. We plan how to best
implement and structure this solution and finally develop it according to the previously
defined requirements.
Demonstration
"Demonstrate the use of the artifact to solve one or more instances of the problem"
[Peffers et al., 2007].
An ERS [OrangeApps, n.d.] is controlled via Bee-Up [Burzynski & Karagiannis, 2020], an
ADOxx-based modelling tool able to exploit the REST API of the artifact. The concrete
use-case is drawing a sketch on paper, as the tool-set for the ERS is rather limited.
Evaluation
"Observe and measure how well the artifact supports a solution to the problem. [...] At
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the end of this activity the researchers can decide whether to iterate back to [Design and
development] to try to improve the effectiveness of the artifact or to continue on to com-
munication and leave further improvement to subsequent projects" [Peffers et al., 2007].
Iteration to improve quality is not possible in the venue of this project. As such, it is just
evaluated how well the product performs. We use Bee-Up to create sample tasks for the
robot to subsequently evaluate the following metrics:

• Generalisability
• Ease of usage
• Movement functionalities (circles, lines, time, ...) by coordinates
• Error handling

The final implementation is tested with a program for functionality and evaluated accord-
ing to the result. These findings are discussed and rated for possible future improvements.
Communication
"Communicate the problem and its importance, the artifact, its utility and novelty [...]
and its effectiveness to [...] relevant audiences" [Peffers et al., 2007].
This part is not covered in this thesis.



2
State of the Art in Programming

Robots

It is researched, how robots are controlled using existing software and investigated,
whether a similar or identical project already exists. So far, we are only aware that
there are approaches to use REST APIs to control robots from different brands and ap-
proaches to use APIs or indirect REST APIs with KUKA robots. But no REST API
with KUKA robots directly. The major projects are covered in the following sections.

2.1. KUKA Robot Controller (KRC)

KUKA provides the KUKA Robot Controller (KRC) to control its robots. This is essen-
tially a machine running the Windows operating system with the robot interpreter which
interprets the KUKA Robot Language (KRL) source code [KUKA AG, 2023h]. The
computer is extended with a smartPAD, which is a hand-held tablet [KUKA AG, 2023a].
It provides the Human Machine Interface (HMI), allowing the user to either control a
robot manually, teach movements or even write code [KUKA AG, 2023b]. This control
structure is visualised in figure 2.1.

Fig. 2.1.: Architecture for controlling a KUKA Robot using the KRC.

The Education Robot System (ERS) not only represents a complete 6-axis jointed-arm
robot, but can also be operated and programmed like a real KUKA robot [OrangeApps, n.d.].
Practically, the only difference between the ERS and a real robot is that the ERS is con-
structed using LEGO pieces, resulting in less accurate motions. To control it, a similar
architecture as for real robots is used, as shown in figure 2.2. A KRL script is interpreted
by a KRC which is run inside a KUKA.OfficeLite Virtual Machine. The ERS-Interface,
a KUKA Options Package (KOP), handles the communication with the ERS via USB.
Internally, the ERS is built on a LEGO SPIKE Prime Hub running MicroPython. This
hub controls the motors of the robot.

6
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Fig. 2.2.: Controller Architecture of the OrangeApps Education Robot System (ERS). To
control the ERS, the KUKA Robot Language (KRL) is used. A KRL Script
is interpreted by the KUKA Robot Controller (KRC) in the KUKA.OfficeLite
Virtual Machine. A KUKA Options Package (KOP) named ERS-Interface is
necessary to communicate with the ERS via USB. Internally, the ERS is built
on a LEGO SPIKE Prime Hub running MicroPython.

The KRL is an imperative programming language. In addition to typical programming
statements such as variable assignments, conditionals, and loops, KRL provides robotic
specific statements such as point-to-point or linear motions [Mühe et al., 2010].
However, it does not include common features in modern programming languages, such
as advanced mathematics like matrix operations, optimisation or filtering methods. Ad-
ditionally, the use of external libraries is not natively supported. Hence, it is only of
limited utility for research purposes [Sanfilippo et al., 2015].

2.2. KUKA Robot Sensor Interface (RSI)

The KUKA RSI allows the robot controller to receive and process data from external
sensors. The data can be ingested via Ethernet, among other options. The resulting
system architecture is modelled in figure 2.3. An example implementation with RSI is
shown in [Zuther, 2019]. However, this interface is far from resembling a REST API and
comes with a significant financial cost due to its proprietary nature [KUKA AG, 2023g].

Fig. 2.3.: Architecture for controlling a KUKA Robot using the KUKA Robot Sensor
Interface (RSI) to extend the KRCs functionality by allowing it to communicate
with external sensors over Ethernet.
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2.3. Fast Research Interface (FRI)

The Fast Research Interface (FRI) enables applications controlling a KUKA lightweight
robot (LWR) to be hosted on all operating systems. The FRI is a low latency interface,
as it allows up to 1000 messages per second. Its design is shown in figure 2.4.
The features of the KRL, such as linear and circular motions, are exposed by the FRI
over a UDP connection [Schreiber et al., 2010].
The FRI is provided by KUKA as an add-on software and therefore closely integrated into
the KUKA ecosystem [KUKA, 2019b]. Previously, it worked with KSS [KUKA, 2011b],
but this version is discontinued [KUKA AG, 2023e]. Currently, it is used in combination
with the KUKA Sunrise environment [KUKA AG, 2023c] which has to be purchased from
KUKA.

Fig. 2.4.: Architecture for controlling a KUKA Robot using the Fast Research Interface
(FRI) to extend the KRCs functionality by allowing it to communicate with
remote clients over UDP.

2.4. JOpenShowVar

JOpenShowVar is a Java open-source cross-platform communication interface to KUKA
industrial robots.
This interface allows for the interaction with the real-time control process of the robot
and makes it possible to perform several operations, such as selection or cancellation of
a specific program, error and fault detection, renaming program files, saving programs,
resetting I/O drivers, reading variables, and writing variables. To achieve this, it incorpo-
rates KUKAVARPROXY, a multiclient server running on the KRC, which in turn relies
on the Crosscomm interface to interact with the KRL runtime [Sanfilippo et al., 2015].
To convert these functionalities to actual motions, JOpenShowVar employs an actuator
program in KRL. In the simplest use case, this is essentially a loop that keeps executing
a motion according to a global variable. Hence, JOpenShowVar requires a custom KRL
program depending on the use case. The complete architecture of JOpenShowVar is
shown in figure 2.5.
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Fig. 2.5.: Architecture for controlling a KUKA Robot using JOpenShowVar to read and
write variables of the Robot Interpreter.

2.5. OPC UA

The OPC UA protocol is mainly used for information sharing between systems by reading
and writing variables to and from a robot. [KUKA , 2019]
It is used by [Arnarson et al., 2020] to achieve collaboration and communication between
robots from different manufacturers. The KUKA robots are connected to the OPC UA
server using the KUKA RSI and KUKAVARPROXY-OpenShowVar. The RSI is used for
real-time control of the robot, whereas OpenShowVar is used to collect additional data
from the robot. This setup is visualised in figure 2.6.
However, there also exists an option package provided by KUKA, but it can not simply
be ordered anymore [KUKA AG, 2023f].

Fig. 2.6.: Architecture for controlling a KUKA Robot using OPC UA.

2.6. Robot Operating System (ROS)

The Robot Operating System (ROS) is a widely used framework for personal and in-
dustrial robots. ROS contains software libraries and tools for developing applications
involving robots [Open Source Robotics Foundation, n.d.a]. Despite the name, ROS is
not actually an operating system. Essentially, ROS provides a message-passing system
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called “plumbing”. Since communication is often a key part in software systems that inter-
act with hardware, ROS can be very helpful [Open Source Robotics Foundation, n.d.b].
Concerning the available tools within ROS, there is a package in development for KUKA
robots [Hoorn, n.d.]. However, support for actual robot models is still experimental and
particularly parameters for inverse kinematics (IK) only exist for a few models [Jülg, n.d.].
Alternatively, the KRC can be used as the robot driver. It can be connected to ROS by
various means, such as the RSI and KUKAVARPROXY as shown by [Arbo et al., 2020],
the FRI as demonstrated by [Chatzilygeroudis et al., 2019], or by using the KUKA Sun-
rise environment [Mokaram et al., 2017]. Figure 2.7 depicts how ROS is used with a
robot. The internals of ROS such as the "plumbing" are omitted.

Fig. 2.7.: Architecture for controlling a KUKA Robot using ROS. The Robot Driver
can be a native implementation, or a KRC connected to ROS via one of the
discussed approaches.

2.7. Robotics API

Robotics API is an object-oriented framework for industrial robots, implemented in Java
[Angerer et al., 2013]. It is a front end to a Robot Control Core (RCC) which physically
controls a robot. This relation is shown in figure 2.8. While the Robotics API is RCC
independent, it comes bundled with an RCC implementation based on the Kinemat-
ics and Dynamics Library (KDL) from the Orocos framework developed by Bruyninckx
[Bruyninckx, 2001].
The Orocos framework does not provide concrete kinematic models of robots, but does
handle the calculation of inverse kinematics for arbitrary kinematic chains. The Robotics
API does however provide models for some robots, even multiple of the KUKA KR series,
but the OrangeApps ERS and many others are not covered.
There are 2 Versions of the Robotics API, Version 0.9 and Version 2. Unfortunately,
Version 2 is only sparsely documented. The API is licensed under the Mozilla Public
License (MPL) v2 which allows for use in combination with proprietary code.

Fig. 2.8.: Architecture for controlling a KUKA Robot using the Robotics API.



2.8. REST API 11

2.8. REST API

As an exemplary for a REST API controlling a robot, we consider the Dobot arm from
OMiPOB [Karagiannis & Muck, 2017]. In this project, a REST API is used to steer a
robot arm through the open-dobot firmware [maxosprojects, n.d.]. In OMiPOB, GET,
PUT and POST requests onto various resources (URIs) are used for control. The des-
tination positions for movement commands are specified in Cartesian coordinates since
the inverse kinematics are handled by the firmware. This allows the robot arm to be
controlled by tools such as Bee-Up [Burzynski & Karagiannis, 2020].

Fig. 2.9.: Architecture for controlling a Robot using a REST API.



3
A REST API for Accessing KUKA

Robots

The requirements for our solution define the external structure of the implementation.
As visualised in figure 3.1, on the client side, the bridge must expose a REST API. On
the back end, we need an interface to control a KUKA robot. In the following sections,
we research and decide on how to fill this black box to bridge REST requests to robot
movements.

Fig. 3.1.: Communication Diagram of the design skeleton of a Bridge for KUKA robots.
The system has a REST interface exposed to the client and an undefined chan-
nel to the robot. The bridge might involve internal communication.

3.1. Functional Scope

The most important decision to take is which methods to provide. Choosing the wrong
or too few may lead to the implementation being of limited utility, as it may not support
the functionality expected from a robot. The inherent purpose of a software bridge is to
retain functionality while altering the interface.
The KUKA Robot Language contains three motion commands, PTP, LIN and CIRC,
which can be combined into Splines [KUKA, 2022]. Together with logic elements and
additional parameters to configure motions, this allows to use a robot to its full capacity.
Hence we suppose, that the REST API needs to provide the basic motion functions PTP,
LIN and CIRC. More elaborate elements such as logic, or interaction with inputs can be

12
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outsourced to the client. More complex motions like Splines can be achieved by chaining
multiple movement commands on the client-side. For time-critical motions this approach
is sub optimal, as the commands are sent in separate requests, the bridge might introduce
delays between them. To mitigate this limitation, the REST API shall provide a method
to submit multiple commands at a time, which are then executed continuously.

3.2. Possible Approaches for the Robot Interface

An important decision in the design of the bridge is which approach to take for the
part communicating with the robot. We call this part the robot interface. The upcom-
ing sections provide explanations for various ideas. They are compared, assessing their
strengths and limitations. Some approaches mentioned in chapter 2 that are not available
anymore, such as OPC UA, or are not sufficiently documented like the Robotics API, are
not considered in this section.

3.2.1. File KRL

It is possible to have an external (in respect to the KRC) REST API communicating with
the KRC through a shared file. On the KRC, there has to be a KRL script repeatedly
reading the shared file and executing whatever command the file contains.
A caveat is, that opening a file might lock it and prevent other programs from opening
it. We would have to make sure, that every program needing to open a file eventually
gets access to it.
Because this approach makes use of the KRC, the inverse kinematics are already built
in for all compatible robot models. Thus, this approach would lead to the product
theoretically being compatible with all robots that work with a compatible KSS version
[KUKA, 2022].

3.2.2. Serial KRL

Previous versions (5.4 - 7.0) of the KUKA System Software (KSS) supported communica-
tion over a serial port natively [KUKA, 2011a]. That way, an external REST API could
communicate with the KRC through a USB cable for example. Unfortunately, KSS 8.7
does not support this. We would have to implement our own external module [KUKA,
2019].
Searching in Google Scholar for "external module" and "CREAD" (the method calling
the external module) only yields one relevant result, [Li, 2011] making use of serial com-
munication on an older KSS version.
It is uncertain, how much time and resources the development of such an external module
for KSS 8.7 would take up.

3.2.3. Web Interface KUKA RSI

As shown in 2.2, the KUKA RSI could be extended with a REST API. In this case, the
same advantages as with the other approaches integrating the KRC would be present.
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Nonetheless, the high cost of the KUKA RSI renders this approach infeasible
[KUKA AG, 2023g].

3.2.4. KUKA Ethernet KRL

The KUKA.Ethernet KRL option package allows the exchange of arbitrary XML or binary
data over TCP from and to the KRC during runtime [KUKA, 2019c].
In addition to a necessary capital investment [KUKA AG, 2023d] for purchasing the pack-
age, [Sanfilippo et al., 2015] mention that it only provides a limited set of functions.

3.2.5. Direct Serial Communication

It is also possible to control the OrangeApps ERS via the USB interface directly, skipping
the KRC. The ERS uses a LEGO Spike Prime Technic Hub to control its motors. On
the hub, a micropython shell is running executing a file provided by OrangeApps that
will allow the robot to be controlled by sending JSON data over the serial interface. In
the JSON payload, the robot’s axis rotation values and therefore its movements can be
defined. With this approach, the kinematics still need to be solved. Not only for the
ERS, but all future models.

3.2.6. Y200 Interface

The Y200 interface allows an external program to communicate with the robot controller.
It enables a client to read the inputs ($IN variables), outputs ($OUT variables), axis and
coordinate values of the KRC. It also provides write access to set Boolean values as the
digital inputs. By using the Y200 interface to send data to the KRC, it is not necessary
to implement the inverse kinematics. However, the interaction with the Y200 interface
on the external side, as well as internally converting the binary inputs back to structured
data is not trivial. Due to the lack of easily available documentation the expected cost is
uncertain.

3.2.7. FastResearchInterface (FRI)

The FRI exposes the functions of KRL over UDP, which would suit our demand, as
it allows any software to control the robot while handling the kinematics. As the FRI
depends on the software of the KRC, it is unsuited for our use case with the OrangeApps
ERS. The ERS is provided with KSS, whereas the FRI is only supported in combination
with the KUKA Sunrise environment.

3.2.8. JOpenShowVar

JOpenShowVar uses an actuator program written in KRL to control the robot, essentially
allowing to leverage all of KRL’s functionalities. To stop the need for a specific actuator
script for each use case, it is possible to develop a script that is able to handle many
different use cases. To interact with this actuator, JOpenShowVar uses the Crosscomm
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interface. There is hardly any documentation on the Crosscomm interface available,
neither using the google search engine nor on KUKA websites.

3.2.9. ROS

There already exists a REST API for ROS, called ROStful [Kehoe, 2014]. We are confi-
dent, that it is possible to combine ROStful or another REST API through ROS’ plumbing
with a robot driver. By using these preexisting solutions, we can save time in development
and ensure our product is both extendable with more functionality and generalisable for
a variety of robot models.
However, ROS being an extensive framework poses a significant entry barrier, since it
takes time to read into and get used to the ROS environment. Furthermore, the existing
software is not production ready [Hoorn, n.d.]. As a consequence, additional time would
need to be accounted for, as unforeseen problems or bugs could occur.
Implementing a robot driver to work with ROS might also take considerable time, as
the parameters for inverse kinematics need to be found. In the best case, the manufac-
turer or other entities already knowing the joint parameters are willing to provide these.
Otherwise, there are multiple ways to identify the kinematic parameters, as shown in
[Kolyubin et al., 2015]. For each robot model that the system should be used with, this
process of finding the IK parameters has to be repeated, unless there already exists a
robot driver for said model in ROS.
Alternatively, the KRC can be used as the robot driver. It can be connected to ROS via
many of the previously discussed approaches. However, this means that this approach
inherits the negative aspects of any solution used to connect the KRC to ROS. This is
the case for financial costs as for the RSI or for undocumented solutions. While ROS is
a generally useful framework, it might be excessive for our use case, considering its entry
barrier and further its dependence on a robot driver.

3.3. Comparison of Approaches for the Robot
Interface

Our solution should, as defined in Section 1.3, be usable with not just the OrangeApps
ERS, but with other KUKA robots as well. Furthermore, the selected approach must
be feasible under the constraints of limited time and financial resources. Consequently,
these two factors play a major role in deciding which approach to take.
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Approach generalisability Feasibility Score
File KRL Compatible KSS required Yes 2
Serial KRL Compatible KSS required External module re-

quired, cost uncertain
1.5

RSI Compatible KSS required No, financial hurdle 1
Ethernet KRL Compatible KSS required No, financial hurdle 1
Direct Serial No, robot driver required Yes 1
Y200 Compatible KSS required Uncertain 1.5
FRI KUKA Sunrise required No, financial hurdle 1
JOpenShowVar Compatible KSS required Uncertain 1.5
ROS Robot driver or a proxy ap-

proach required
Might exceed the
available time frame

1.5

Tab. 3.1.: Comparison of different approaches for the robot interface under the metrics
of generalisability and feasibility.

The comparison of the different approaches in table 3.1 shows that for the metric of gener-
alisability, there is a dominant case, namely "Compatible KSS required". For approaches
utilising the proprietary KRC, the controller must run a compatible KSS Version or the
Sunrise environment. Alternatively, for the Direct Serial approach, a driver for each par-
ticular robot model is required, rendering the approach not generalisable. Whereas in
the case of ROS, one of the other approaches would sensibly be used as a robot driver,
in turn relying on a compatible KSS. Relying on open source drivers would only work for
a limited number of robots.
Implementing a robot driver is non-trivial, as it is necessary to find the IK parameters, and
has to be repeated for every new robot model [Kolyubin et al., 2015]. In contrast, having
a KSS version compatible to KSS 8.7 seems to be the looser condition. KSS versions
8.X should be compatible, and for a KRL program to work on other version, it is to be
expected that only parts would need to be rewritten. Different KSS versions are relatively
compatible to each other [KUKA, 2009], except input/output using CREAD/CWRITE
[KUKA, 2019a].
Concerning the feasibility metric, only the two approaches File KRL and Direct Serial
are certainly feasible within timely and financial boundaries of this thesis.
Considering this in combination with the generalisability, we assign each alternative a
score that can be seen in table 3.1. For each metric, we assign 1 to the best and 0 to
the worst value. Decimals between 0 and 1 are used to express uncertainty or medium
values. The score for each alternative is the sum over the metrics.
As an example, the approach Serial KRL gets a score of 1.5. This represents the sum of 1
from the generalisability and 0.5 from the feasibility metric, given that requiring a com-
patible KSS version is the looser and therefore better constraint limiting generalisability.
And the uncertainty of the feasibility of the external module valued with 0.5.
We deem the File KRL approach mentioned in 3.2.1 the best alternative, as it has the
highest score.
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3.4. Client Interface

Not only the robot-side of this software bridge has to be designed, but also the REST
API, e.g. the client interface.

3.4.1. Protocol

According to [Bormann et al., 2012] HTTP [Thomson & Benfield, 2022] is the most pop-
ular application protocol on the internet. HTTP can fulfil the requirements of REST
[Surwase, 2016], and can thus be used to build REST APIs. This makes it the ideal
protocol to use for our approach.
HTTP allows the usage of requests of different methods onto resources (URIs). These
methods are GET, POST, PUT and more. Example use cases for the methods are: For
GET: Retrieving information located at the specified URI, for POST: Send data to a URI
for it to be processed by that URI. And for PUT: Upload data for it to be accessible on
the server at the given URI [Nielsen et al., 1999].
Obviously, as the name Hypertext Transfer Protocol already suggests, its methods are de-
signed for text, not for robot movements. Nevertheless, it can be used with robots, as for
example with the RobotArm in the OMiPOB environment [Karagiannis & Muck, 2017].
It makes use of all of the three mentioned methods. GET is used to collect the current
position, PUT will move the robot to the given destination, and POST is used for con-
trolling mounted tools or submitting sequences of movements. Coordinates are sent as
JSON in the request body, but tools are controlled via request parameters.
While the previously mentioned approach is in line with the intended use of the request
methods, we decide to rely solely on POST requests. Enforcing different methods unnec-
essarily increases complexity of programming, as the differentiation between functions is
already done with URIs. It is simpler and more consistent to use POST for every request.
Especially, given that this too is compatible with the definition of POST, as in any case
the robot processes the request. Both perspectives to look at the robot’s position are
reasonable, for example. With PUT, moving the arm updates the URI, which then can
be fetched with GET. In contrast, using POST for commands is principally the same as
sending the robot a message.

3.4.2. Framework

We implement the REST API with FastAPI [Ramírez, n.d.]. FastAPI is well adopted
and works with asynchronous functions [Kornienko et al., 2021]. Additionally, it natively
includes Swagger which allows visualising and interacting with the API without needing
any implementation [SmartBear Software, n.d.].

3.4.3. Web Server

For the actual implementation of the API we rely on a web server to handle the HTTP
requests. We use Hypercorn [Jones, n.d.], as it supports asyncio locks. As a robot can
only process commands in sequence, not in parallel, our implementation will need to
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incorporate a mutual exclusive zone. This essentially leads to a phase change between
the parallelised and asynchronous REST API and the sequential interface to the robot.

3.4.4. Design of the Entire Implementation

Assembling the previously discussed parts, we reach the entire architecture shown in figure
3.2. The part of the bridge that interacts with the robot (called robot interface in figure
3.2) is implemented on the KRC. It is simply a KRL script controlling the robot with
the built in commands. We can treat this as a black box as it is already implemented.
The robot interface communicates with the other part of the bridge via shared files. The
bridges client interface is built using a Hypercorn web server in the FastAPI framework.
Clients can communicate to this interface utilising HTTP.

Fig. 3.2.: Concrete architecture of the proposed information system. Components and
their communication mediums are depicted. Communication between the client
and the bridge (Hypercorn web server) uses the HTTP protocol. Internally,
the bridge uses files for inter process communication. The bridge, which is
partly built on the robot controller (KRC) uses KUKA’s proprietary protocol
to control the robot, which we can treat as a black box.

3.5. How to evaluate

To evaluate the system, we utilise a Bee-Up model [Burzynski & Karagiannis, 2020],
wherein we use the AdoScript [ADOxx.org, 2019] language to send POST requests to
the Bridge. In order to examine the functionalities of the system, we try to execute lin-
ear, PTP and circular movements. It must be possible to combine commands to realise
complex behaviours. As no tools such as suction cups or grippers are readily available for
the OrangeApps ERS, we will limit our testing to drawing with a pen that can be easily
fitted to the robot’s flange. Subsequently, the implementation is assessed according to
the predefined metrics:

• Generalisability
• Functionality
• Error handling
• Ease of usage



4
Implementation and Evaluation

Documentation of the final implementation, including detailed description of its usage.
The result of the evaluation, e.g. if the API works, and how extensively and robust it
works, and whether it also works for other KUKA robots than the Education Robot from
OrangeApps.

4.1. Implementation

Figure 4.1 visualises the complete implementation [Gabriel, 2023]. A client, which can be
a user of the Swagger UI [SmartBear Software, n.d.], a Bee-Up instance
[Burzynski & Karagiannis, 2020] or any other program, sends a request to the REST
API. The Hypercorn webserver [Jones, n.d.] calls an asynchronous function to handle
this request. It will then try to enter a critical region. Firstly, in this zone a file is
accessed for writing, which by the operating system is limited to one process at a time.
This file is the communication channel between the client interface and the robot in-
terface. Secondly, we need to wait for a response from the robot controller to be sure
that the command was executed before overwriting it with another command. As the
robot can only process commands sequentially, we are forced to somehow transfer from
an asynchronous flow to a synchronous one anyways.

19
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Fig. 4.1.: Activity Diagram showing the process flow when a POST request arrives.

On the robot controller, the KRL interpreter is in a loop and reads the content of the
formerly mentioned file. The file contains the next instruction for the robot, which the
KRC promptly executes. When finished, the controller writes the result into another file.
This file is periodically checked by the client interface. Once the result is found in the
file, it is sent back to the client as the POST response.

4.1.1. Exposed Functionalities

To provide the functionalities defined in Section 3.1, we suppose the methods listed in
table 4.1. These are implemented in the current version of the KUKA bridge. The IDs
are integer representations of the functions that are used to communicate function calls
from the client interface to the robot interface. Because of KRL not supporting switch
cases with strings [KUKA, 2022], we opted for this approach as we deemed it to be the
most readable way of working around this limitation. More details on this topic is given
in section 4.1.3.1
These functions provide the ability to move to a point (ptp), do straight lines (linmov)
and circular motions (circ). Getting the current position (getpos) is obviously essential.
The tool center point (tcp) is a handy function to use when mounting a tool to the robot.
It is possible to define the shape of the tool such that when using motion commands,
they are applied in respect to the tools tip instead of the robot flange. Essentially, it is
like a constant offset applied to target coordinates.
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ID Method Description
1 ptp Moves to the given point on an nondeterministic path
2 linmov Moves to the given point in a straight line
3 getpos Returns the current position
6 base Moves to the base position
7 circ Moves in a circle through the auxillary point to the destination point
8 tcp Set the tool center point (TCP)
9 gettcp Returns the current tool center point (TCP)
10 uploadfile Upload a KRL .src file/function which is then executed

Tab. 4.1.: A list of the implemented functions. The ID is only used internally by the
bridge.

Fig. 4.2.: Illustration of the ptp method.
The robot’s flange is at (X=200,
Y=0, Z=70, A=0, B=180, C=0).
The red arrow shows the motion of
the robot according to a ptp mo-
tion to (x=250, Y=100).

The file upload allows the client to upload a
custom KRL source file containing a func-
tion that will be executed on the robot con-
troller. This allows to use all of KRL’s ca-
pabilities without the need to implement
them separately. This includes splines and
time-critical movements, as the time delay
introduced by the bridge is removed.

The ptp method is visualised in figure 4.2.
It is important to note that the path of the
robot is not deterministic [KUKA, 2022].
The path, represented as a red arrow, is
essentially a three-dimensional curve.
In Contrast, the linmov method guarantees
the path to be a straight line between the
start and end point, as shown in figure 4.6.
To receive the information of where the
robot currently is, the getpos method is
used. The robot’s position is specified in
the base coordinate system, which originates at the robot’s base, see figure 4.4. The same
system is used to provide target points for the motion methods. The Cartesian system
is six dimensional. The dimensions X, Y and Z determine where a point is in space.
Additionally, the orientation of the robot is specified, e.g. the pitch, roll and yaw. These
orientations named A, B and C, constitute the other three dimensions. They correspond
to rotations around the Z, Y and X axis respectively.
Method 6, base, provides a save "home" position. It is called "canonposition" by Or-
angeApps and has to be used to transport the ERS. The KRC also requires a "BCO
run" at the start of a program [KUKA, 2022]. The BCO run initiated by the bridge also
ends at this base position. The base position can also be used as a preprogrammed safe
position.
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Fig. 4.3.: Illustration of the tool coordinate
frame. Its origin is at the robot’s
flange.

Another motion command is the circ
method, allowing smooth circular motions.
Unlike the ptp and linmov methods, circ
requires two points to be specified. An ex-
ample for this is depicted in figure 4.5. To
define the circular path shown in red, an
auxiliary point (blue cross) is used. The
path goes through the auxiliary point in
a circle and ends at the destination point.
There are multiple options for the tool to
behave during the motion, more on that in
Section 4.1.2.1.
The TCP is a cartesian frame originating
at the robot’s flange, used to model the
mounted tool. It essentially acts as a con-
stant offset to the target coordinates, such
that instead of the robot’s flange moving
to a target point, the top of the tool does.
The TCP is illustrated in figure 4.3. The
tool frame also includes the orientation,
identically to the base coordinate system. Specifying the dimensions of the tool is possible
using the tcp method. It sets the tool center point (TCP).

Fig. 4.4.: Illustration of the base coordinate system. The three dimensions X, Y and
Z originate at the base of the robot. The rotational orientations A, B and
C correspond to rotating around the Z, Y and X axis respectively. Here, the
Right-Hand-Rule applies.
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Fig. 4.5.: Illustration of the circ method. The red arrow shows the motion of the robot
according to a circ motion. The robot’s flange is at the destination point
(X=200, Y=-50, Z=80). The red cross (X=200, Y=50) marks the starting
point, whereas the blue cross is the auxiliary point (X=250, Y=0).

Fig. 4.6.: Illustration of the linmov method. The robot’s flange is at (X=200, Y=0, Z=70,
A=0, B=180, C=0). The red arrow shows the motion of the robot according
to a lin motion to (x=250, Y=100).
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4.1.2. Client Interface

This section goes into detail about the client interface. For an overview, this part is
highlighted in figure 4.7.

Fig. 4.7.: The architecture of the proposed information system. Highlighted in green is
where the client interface is located within the overall architecture.

The base of this part of the bridge is the Hypercorn web server. In listing 4.1, it is shown
how it is started. To use mutex locks, we use the asyncio event loop to run the server.
In line 6, we create a lock provided by the asyncio library. The mutex is global, so we
can access it from within every function. In Line 9, we add the server to the previously
created event loop and specify to use the FastAPI framework.

1 # create asyncio event loop necessary to use mutexes
2 loop = asyncio.get_event_loop()
3

4 # create a mutex lock, so only one command is sent to the robot at once
5 global mutex_wfile
6 mutex_wfile = asyncio.Lock()
7

8 # create the REST API
9 fapi = loop.create_task(serve(FastAPI(), config))

10 loop.run_forever() # start event loop

List. 4.1: Code of the eventloop and mutex.

Within the FastAPI framework, we can define functions that are called upon the server
receiving a request. As an example, the Point-to-Point function is given in listing 4.2. The
@app.post decorator defines upon which HTTP method and on which resource (URI)
the function is called and also its response code. For the example, this means using a
POST request onto the URI /krl/ptp and upon success, it responds with code 200.
The function uses the async prefix, as in the context of webservers it makes sense to have
asynchronous function to allow processing requests in parallel. The function parameters
are equal to the HTTP parameters. For PTP, these parameters are the coordinates
of the target point. Although using 6 separate variables is less readable, it leads to a
user-friendly representation in the Swagger UI, which is covered in Section 4.1.2.1.
In Line 5 the method is defined. This number is the internal method ID used to tell
the robot interface which function should be executed. Ideally, this would be a string
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like "ptp". But because KRL does not support switch cases with strings, we opted for
integers. Which ID belongs to which method can be looked up in table 4.1.

1 @app.post("/krl/ptp", status_code=200)
2 async def ptp(x : float = None, y : float = None, z : float = None,
3 a : float = None, b : float = None, c : float = None,
4 s : int = None, t : int = None) -> Status:
5 method = "1"
6 async with mutex_wfile:
7 cid = increase_cid()
8 command = await send_to_robot(cid, method, pos=(x,y,z,a,b,c), s=s, t=t)
9 status = await wait_for_robot(cid)

10 return parsed_robot_response(status)

List. 4.2: PTP function of the REST API.

The mutex is acquired in Line 6. Within this protected area we essentially move into
a sequential realm in contrast to the parallelised REST API. Subsequently, the unique
command ID (CID) is calculated. This is necessary for the robot interface to be able
to distinguish two identical consecutive commands. The CID is initialised as a random
integer as shown in listing 4.3 and increased by one on each function call.

1 cid = random.randint(1, 0x7FFFFFFF) # KRL INT max value is 2**32-1

List. 4.3: Initialisation of the command ID (CID).

Next on line 8 in listing 4.2, the PTP command is sent to the robot. Then, the program
waits for its result. Finally, the status is returned in the HTTP response.
Listing 4.4 contains the code of the send_to_robot function. It sends the command, in
this example the ID for the PTP method, the CID, and the target coordinates to the
robot interface. This is achieved by writing it to the file designated as the communication
channel to the robot interface. Said file has the structure shown in listing 4.5. The first
line contains the CID, method ID, and the target coordinates, each separated by a space.
For methods not using a target point like getpos, zeroes are written. Otherwise, the
KRL script would crash since the format would not match the expected format. The
coordinates must be saved in a form readable by the StrToE6POS function defined in
KRL [KUKA, 2022]. The next lines contain additional data, if the method necessitates
it. This can be the auxiliary point and orientation variable for the circ method.

1 command = str(cid) + " " + method + " " + pos_str + "\n"
2 while not ok:
3 try:
4 async with aiofiles.open(cmd_file_path, "w") as f:
5 await f.write(command)
6 ok = True
7 return command
8 except: # when failing to open the file
9 await asyncio.sleep(cooldown)

10 print("retry")

List. 4.4: Source code of the send_to_robot function. This function writes a command
to a file.
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1 {CID} {METHOD} {E6POS}\n
2 [{auxilliary E6POS}\n]
3 [{ORIENTATION}]

List. 4.5: The structure of the file containing the command. Parameter in Brackets []
are optional.

The wait_for_robot function takes the CID as an argument. It keeps reading the receiv-
ing file until it contains the robot interfaces response to the given CID. The file is of the
structure: CID STATUSCODE X Y Z A B C where the single-letter parameters indicate the
robot’s current position. If the file can not be read, it is retried after a short delay.

1 async def wait_for_robot(cid):
2 # Wait for and get the response from the robot controller
3 while not ok: # wait for the response of the robot
4 try:
5 # open the receiving file
6 async with aiofiles.open(recv_file_path, "r") as f:
7 # read contents and print first line
8 lines = await f.readlines()
9 elements = lines[0].split()

10 # check that the CID of the response matches the CID that we sent and
are waiting for

11 if elements[0] == str(cid):
12 ok = True
13

14 # wait if it did not yet contain the expected response
15 if not ok:
16 await asyncio.sleep(cooldown)
17

18 except: # when failing to open the file
19 await asyncio.sleep(cooldown)
20 print("retrying...")
21 return status

List. 4.6: Source code of the wait_for_robot function. This function repeatedly reads a
file until the robot interface writes its response to the sent command into that
file.

The graphical user interface provided by Swagger is shown in figure 4.8. It is accessible
by web browser and through it, the methods can be accessed manually.
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Fig. 4.8.: Overview of the Swagger UI.

4.1.2.1. POST Request Format

For most methods, the necessary POST parameters are coordinates. Each dimension
is defined by a separate argument. For the ptp method, the available parameters are
x,y,z,a,b,c,s,t. The interface for the ptp method in Swagger UI is show in figure 4.9.
It allows the user to input each parameter manually and send the request by pressing the
Execute button. Variables x to c are the points coordinates. At this point, we will not
delve into the meaning of variables s and t. They are explained in section 5.2.

Fig. 4.9.: Parameters for the PTP function in the Swagger UI.
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If some parameters are not specified, it depends on the method whether default values
are used or the variables are not forwarded at all. For example, if for a PTP motion not
all dimensions are specified, the current values of missing dimensions are kept. So if the
robot currently is at x=20, y=0, z=10 and you make the request: /krl/ptp?x=30 the
robot will move to the position x=30, y=0, z=10.

4.1.2.2. POST Response Format

The response sent to the client upon executing a command is formatted as JSON, for ex-
ample {"statuscode": 1, "position": [200, 0, 200, 0, 90, 0] }. The responses
schema is specified using the pydantic library, shown in listing 4.7. It is a dictionary in-
cluding the keys satuscode and position. The latter contains the coordinates of the robot’s
current position, whereas the former indicates the status with which the command was
finished.

1 class Status(BaseModel):
2 statuscode: int = 1
3 position: List[float] = [200, 0.0, 200.0, 0, 90, 0] #position of robot after the

command

List. 4.7: Schema of the response based on the pydantic library.

4.1.3. Robot Interface

This part describes the robot interface. In figure 4.10 it is highlighted where this part is
situated in respect to the entire implementation.

Fig. 4.10.: The architecture of the proposed information system. Highlighted in green is
where the robot interface is located within the overall architecture.

The robot interface is implemented using the "File KRL" introduced in Section 3.3. This
means, we utilise the KUKA Robot Controller to execute an actuator script written in
KRL. This script interacts through files with the client interface. The KRL interpreter
handles the communication to and from the robot as well as the kinematics. KSS Version
8.7 is used for development and testing of the software.
In listing 4.8, pseudo code is used to explain the logic of the actuator program. It
continuously reads the CID, method ID and coordinates from the command file. If the
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CID is new, e.g. not the same as last time, the command is executed, otherwise this
procedure is repeated after a short delay. After the command is executed, the result is
written to the result file combined with the CID.

1 while true:
2 read (cid, method, point) from command file
3 if cid is new:
4 do method(point)
5 write (cid, status, position) to result file
6 else:
7 wait some time

List. 4.8: Pseudo-code of the robot interface.

4.1.3.1. Internal Communication

Listing 4.9 contains the KRL code used to read and parse the command file. The file
is opened using the CWRITE statement [KUKA, 2019a], which takes as arguments the
channel, in this case $FCT_CALL which allows to interact with files. STAT and MODE
are variables where the return code is stored and the write-mode is specified respectively,
which are irrelevant in our use case. The next argument is the function krl_fopen which
opens a file, followed by the arguments for that function, the filename, write mode, and
the variable where the file handle is stored.
Next, on line 3, the krl_fgets function is used to read the files content to the rawchar
array. The next arguments are the buffer size of rawchar and the variable where the
number of actually read bytes is stored. The raw string is then parsed in Line 5 using
the SREAD statement. It reads from rawchar using the specified format "%d %d %r",
with the two %d indicating the integers representing the CID and the method ID, and the
%r indicating a string, in this case the string representation of the target position. This
position is then converted into the E6POS type on line 7. This type is necessary to pass
the target point to any motion commands in KRL.

1 ;file needs to be in C: KRC/ROBOTER/USERFILE
2 CWRITE($FCT_CALL,STAT,MODE,"krl_fopen","numpospyv6_d5.txt","r",HANDLE)
3 CWRITE($FCT_CALL,STAT,MODE,"krl_fgets",HANDLE,rawchar[],190,read)
4 OFFSET = 0
5 SREAD(rawchar[],STAT,OFFSET,"%d %d %r", CID, method, POS_STR[])
6 STR_RET = StrToE6POS(POS_STR[], TAR6P)

List. 4.9: KRL Code for reading the command file.

After executing the received command, its result, which is the current position and the
status code, is written to the other file. The code for this is in listing 4.10. We pass
the result and the CID, together with how it should be formatted, to the custom func-
tion fprintf. The function internally uses the krl_fprintf function in combination with
CWRITE, similar to listing 4.9, to write the result to the specified filename.
To actually execute a command, the robot interface relies on various KRL statements.
Most methods are directly built into KRL, such as the PTP or LIN commands. Others,
such as the getpos or tcp methods, are implemented by reading or writing to variables.
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The $POS_ACT variable contains the current position of the robot, whereas the variable
$TOOL$ represents the current configured tool.

1 ;SECTION WRITE
2 filename[] = "kapi_result.txt"
3 format[] = "%d %d %f %f %f %f %f %f"
4 WSTAT = fprintf(filename[], format[], CID, FRET.STATUSCODE, FRET.RETPOS)

List. 4.10: KRL Code for writing to the result file.

For the method of uploading a KRL file, the uploaded file will be called like a normal
function. An example for a valid KRL function is given in listing 4.11. The file must
include a function named fuploaded returning an integer, which will be called by the
main program. There are no further restrictions, all of KRL’s functionalities can be
utilised.

1 DEFFCT INT fuploaded()
2 SPLINE
3 SPL {X 200, Y 0, Z 200, A 0, B 90, C 0}
4 SPL {X 200, Y -50, Z 150, A 0, B 90, C 0}
5 SPL {X 200, Y 50, Z 100, A 0, B 90, C 0}
6 ENDSPLINE
7 RETURN 1
8 ENDFCT

List. 4.11: Example of the code for the fuploaded function. The SPLINE keyword de-
notes a section describing a Spline motion, and the SPL keyword defines a
point on the curve.

4.2. Demonstration

In this section, the usage of the bridge for KUKA robots is demonstrated.
We use Bee-Up to simulate a client. By using AdoScript [ADOxx.org, 2019], we can send
POST requests interactively from within a Bee-Up model. The model we use contains
a variety of commands, from simple motions to a combination of primitive motions to
achieve complex behaviours like drawing a smiley. These are visible in figure 4.11.
Bee-Up is run on a separate device from the KUKA robot controller, but both machines
are connected over the local area network. The client interface however is run on the
KRC, as well as the robot interface. We start both according to the instructions in the
readme file.
In the model, we run example tasks like drawing on paper, as the set of available tools
is limited. For example, there is no gripper available for the Education Robot System
which we use for the demonstration. Nevertheless, drawing on paper is sufficient to test
the complete functionality.
To demonstrate the usage of our product, we implement various procedures containing
commands, e.g. POST requests to the robot interface, in a Bee-Up model. They can be
executed by clicking the "execute" button at the top right of a procedure’s representation



4.3. Evaluation 31

as seen in figure 4.11. Procedures can either be primitive, only executing a single POST
request, or more complex, including multiple requests or also calling other procedures.
The procedure "Move to Base" is considered a primitive, as it only contains one POST
request to move the robot to its base position. Contrary, the "Draw Smiley" procedure
utilises other procedures, such as the "Draw Fixed Horizontal Circle", and combines them
in a sequence.

Fig. 4.11.: The Bee-Up model to draw smileys.

4.3. Evaluation

In this section, an evaluation of the implementation is presented in which the bridge
is compared against the objectives. We use Bee-Up [Burzynski & Karagiannis, 2020],
an ADOxx-based modelling tool to create sample tasks for the robot to subsequently
evaluate the following metrics:

• Generalisability
• Movement functionalities (circles, lines, time, ...) by coordinates
• Error handling
• Ease of usage

Generalisability and the functionalities are metrics specified previously. We used Ease of
Usage and Error Handling as additional metrics, since during the research and develop-
ment we deemed these metrics as important for a good solution.
Regarding the generalisability, we are not able to test our implementation on robots other
than the OrangeApps ERS. Thus, we can only assume, that in theory the implementation
is compatible across various KUKA robot models. As the robot interface is written in
KRL, it is supposed to be runnable on any compatible KRC/KSS version. The client



4.3. Evaluation 32

interface is completely independent of the used robot, and the communication between
the two interfaces should also be possible on most systems.
Concerning the functionalities, we did succeed in sending commands to the robot via
the bridges REST API. All of the implemented primitives behaved as designed and thus
the implementation provides the same functionality as the KRL motion statements. The
primitives can be combined sequentially, just as in KRL. Complex motions (splines, time
critical) are also possible using the file upload functionality. Hence, the functionality
requirement is fulfilled. However, the method to upload a custom KRL source file is
not fully functional. While at first the method succeeds in meeting the objective, by
allowing the user to upload a KRL file containing for example, a spline motion along
multiple points, no second file can be uploaded. If this method is used twice or more
times, each time the first uploaded code is executed. This severely limits the utility of
this functionality.
As discussed, we are able to chain together multiple commands to achieve complex mo-
tions, such as drawing non-trivial shapes like smileys. However, there exist some short-
comings to this feature. Firstly, it may happen that after some motions the robot reaches
an axis configuration that makes further movements in some directions impossible. Sec-
ondly, the bridge offers hardly any error handling. Frequent errors, such as "Software
Limit Switches" that occur when an axis reaches its rotational limit, are unhandled,
hence require a restart of the entire ridge. This is the case if the procedure for drawing
the smiley is extended with drawing a circle as the smileys mouth. Notable is, that this
issue also exists in plain KRL, unless one uses the status and turn variables. However,
their usage is not trivial. Thus, calculating the intended value for status and turn is time
consuming and might be necessary for each point.
As previously mentioned, the occurrence of an error message in the robot interface ne-
cessitates a restart of the KRC. Normally, when using KRL, it is sufficient to confirm the
error message and continue running other commands. But it seems, that the open file
handles used to communicate with the client interface are not closed upon crashing or
confirming the error. Thus, leading to locked files until the operating system is rebooted.
The client interface also needs to be restarted, otherwise it would indefinitely wait for a
response.
Installing the bridge according to the instructions requires approximately the same effort
as setting up comparable solutions. To start the bridge, both the client and the robot
interface need to be launched. This is fairly direct, albeit not plug and play. Finally,
using the bridge is easy, as the methods and parameters presented in a human-readable
format in the UI. There were also no impediments for programmatic usage.



5
Conclusion

Robots are a key reason for increased productivity [Schierl, 2017] and their numbers
are expected to continue growing [International Federation of Robotics, 2022] This aligns
with the Industry 4.0 concept, which seeks to combine information systems and robotics
to improve performance [Benotsmane et al., 2018].
However, there is a major challenge impeding this integration. Many robot manufacturers
employ proprietary communication protocols and interfaces, resulting in compatibility
issues between different robots and information systems [Arnarson et al., 2020].
In this project, we analyse the state of the art in controlling KUKA robots through REST
APIs. We identify that there does not yet exist a product providing a REST API for
KUKA robots. Existing approaches to control KUKA robots either do not offer a REST
API, require model-specific drivers, or incorporate costly, unavailable, or undocumented
dependencies. Consequently, we work out the requirements and design for such a product.
Ultimately, we implement a solution to bridge KUKA robots to a REST API.
The developed product [Gabriel, 2023] provides various functions like PTP motions over
a REST API. It is built on the FastAPI framework and communicates with the KUKA
Robot Controller (KRC) through files. On the KRC, a KRL script is run to read the files
and execute commands on the robot. The product is supposed to be usable with many
KUKA robots, given the KSS version is compatible.
The following section analyses the added value of our solution.

5.1. Discussion

In comparison to the state of the art, the implemented product provides equal or better
generalisability, depending on the specific product, without costly, unavailable or undocu-
mented dependencies. Not needing per-model robot drivers makes our solution work with
all compatible KSS versions supporting communication over files. Similar to JOpenShow-
Var [Sanfilippo et al., 2015], our proposed solution utilises an actuator program written
in KRL. However, we use a single actuator for all use cases and communicate to the KRC
through files instead of the Crosscomm interface.
Regarding functionality, our implementation provides the KRL’s key functions over a
REST API. The API includes the functionality to upload KRL files, making all of KRL’s
methods available to the client, although less conveniently than the natively supported

33
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functions. Some previous solutions provide similar functionality, while others are limited
to information exchange, requiring a robot driver for execution of a command by the
robot.
The error handling of our implementation is limited compared to the state of the art. For
example, JOpenShowVar and the Robotics API [Angerer et al., 2013] offer some levels of
error handling, whereas our products error handling is limited to the errors KRL is able
to catch.
Although the installation process of our implementation requires manual steps, they are
not complex. Starting the program is straight forward with only the order of commands
being important. The bridge is user-friendly with its parameters and methods clearly
presented in the UI and poses no issues for programmatic usage.

5.2. Improvements

On the basis of this work, future research can be conducted in controlling robots. For
example, our implementation could be extended with more functionalities. For instance,
allowing multiple commands to be sent in the request body might be a valuable simpli-
fication for executing motions without delay, rather than necessitating a file upload in a
proprietary language.
Another possible improvement is to prevent the robot from reaching unfavourable posi-
tions after a motion that could lead to the robot reaching axis limitations. The KUE_WEG
function provided by KUKA calculates the S and T values for axis 5 for a destination
point such that the axis 4 and 6 move as little as possible. We suppose that by adapt-
ing that function, a smart program can be developed to intelligently set S and T values
making it less likely to reach an axis limit.
Further possible improvements concern the error handling and simplifying the bridges
usage. An example of a potential improvement is ensuring the robot interface does not
fail when there is no file available to read.
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A
Common Acronyms

API Application Programming Interface
BCO Block Coincidence
CIRC Circular Motion
DSRM Design Science Research Methodology
ERS Education Robot System (by OrangeApps)
FRI Fast Research Interface
HTTP Hypertext Transfer Protocol
IK Inverse Kinematics
IoT Internet of Things
JSON JavaScript Object Notation
KRC KUKA Robot Controller
KRL KUKA Robot Language
KSS KUKA System Software
LIN Linear Motion
OMiLAB Open Models Initiative Laboratory
OMiPOB OMiLAB Physical Objects
PTP Point-to-Point (Movement)
REST Representational State Transfer
ROS Robot Operating System
RSI Robot Sensor Interface
TCP Tool Center Point
UI User Datagram Protocol
UI User Interface
URI Uniform Resource Identifier
USB Universal Serial Bus
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B
Product

The product created in this work is made available to readers on Zenodo. It can be
accessed under the following DOI and URL:
DOI: 10.5281/zenodo.8156235
URL: https://doi.org/10.5281/zenodo.8156235
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